274 research outputs found

    Mitochondrial network state scales mtDNA genetic dynamics

    Get PDF
    Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with healthy aging. MtDNA is stochastically replicated and degraded, and exists within organelles which undergo dynamic fusion and fission. The role of the resulting mitochondrial networks in the time evolution of the cellular proportion of mutated mtDNA molecules (heteroplasmy), and cell-to-cell variability in heteroplasmy (heteroplasmy variance), remains incompletely understood. Heteroplasmy variance is particularly important since it modulates the number of pathological cells in a tissue. Here, we provide the first wide-reaching theoretical framework which bridges mitochondrial network and genetic states. We show that, under a range of conditions, the (genetic) rate of increase in heteroplasmy variance and de novo mutation are proportionally modulated by the (physical) fraction of unfused mitochondria, independently of the absolute fission-fusion rate. In the context of selective fusion, we show that intermediate fusion/fission ratios are optimal for the clearance of mtDNA mutants. Our findings imply that modulating network state, mitophagy rate and copy number to slow down heteroplasmy dynamics when mean heteroplasmy is low could have therapeutic advantages for mitochondrial disease and healthy aging

    Evolution of cell-to-cell variability in stochastic, controlled, heteroplasmic mtDNA populations

    Get PDF
    Populations of physiologically vital mitochondrial DNA (mtDNA) molecules evolve in cells under control from the nucleus. The evolution of populations of mixed mtDNA types is complicated and poorly understood, and variability of these controlled admixtures plays a central role in the inheritance and onset of genetic disease. Here, we develop a mathematical theory describing the evolution of, and variability in, these stochastic populations for any type of cellular control, showing that cell-to-cell variability in mtDNA and mutant load inevitably increases with time, according to rates that we derive and which are notably independent of the mechanistic details of feedback signaling. We show with a set of experimental case studies that this theory explains disparate quantitative results from classical and modern experimental and computational research on heteroplasmy variance in different species. We demonstrate that our general model provides a host of specific insights, including a modification of the often-used but hard-to-interpret Wright formula to correspond directly to biological observables, the ability to quantify selective and mutational pressure in mtDNA populations, and characterization of the pronounced variability inevitably arising from the action of possible mtDNA quality-control mechanisms. Our general theoretical framework, supported by existing experimental results, thus helps us to understand and predict the evolution of stochastic mtDNA populations in cell biology

    2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA

    Get PDF
    Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication

    Exploiting Magnetic Resonance Angiography Imaging Improves Model Estimation of BOLD Signal

    Get PDF
    The change of BOLD signal relies heavily upon the resting blood volume fraction () associated with regional vasculature. However, existing hemodynamic data assimilation studies pretermit such concern. They simply assign the value in a physiologically plausible range to get over ill-conditioning of the assimilation problem and fail to explore actual . Such performance might lead to unreliable model estimation. In this work, we present the first exploration of the influence of on fMRI data assimilation, where actual within a given cortical area was calibrated by an MR angiography experiment and then was augmented into the assimilation scheme. We have investigated the impact of on single-region data assimilation and multi-region data assimilation (dynamic cause modeling, DCM) in a classical flashing checkerboard experiment. Results show that the employment of an assumed in fMRI data assimilation is only suitable for fMRI signal reconstruction and activation detection grounded on this signal, and not suitable for estimation of unobserved states and effective connectivity study. We thereby argue that introducing physically realistic in the assimilation process may provide more reliable estimation of physiological information, which contributes to a better understanding of the underlying hemodynamic processes. Such an effort is valuable and should be well appreciated

    An Update on MyoD Evolution in Teleosts and a Proposed Consensus Nomenclature to Accommodate the Tetraploidization of Different Vertebrate Genomes

    Get PDF
    DJM was supported by a Natural Environment Research Council studentship (NERC/S/A/2004/12435).Background: MyoD is a muscle specific transcription factor that is essential for vertebrate myogenesis. In several teleost species, including representatives of the Salmonidae and Acanthopterygii, but not zebrafish, two or more MyoD paralogues are conserved that are thought to have arisen from distinct, possibly lineage-specific duplication events. Additionally, two MyoD paralogues have been characterised in the allotetraploid frog, Xenopus laevis. This has lead to a confusing nomenclature since MyoD paralogues have been named outside of an appropriate phylogenetic framework. Methods and Principal Findings: Here we initially show that directly depicting the evolutionary relationships of teleost MyoD orthologues and paralogues is hindered by the asymmetric evolutionary rate of Acanthopterygian MyoD2 relative to other MyoD proteins. Thus our aim was to confidently position the event from which teleost paralogues arose in different lineages by a comparative investigation of genes neighbouring myod across the vertebrates. To this end, we show that genes on the single myod-containing chromosome of mammals and birds are retained in both zebrafish and Acanthopterygian teleosts in a striking pattern of double conserved synteny. Further, phylogenetic reconstruction of these neighbouring genes using Bayesian and maximum likelihood methods supported a common origin for teleost paralogues following the split of the Actinopterygii and Sarcopterygii. Conclusion: Our results strongly suggest that myod was duplicated during the basal teleost whole genome duplication event, but was subsequently lost in the Ostariophysi ( zebrafish) and Protacanthopterygii lineages. We propose a sensible consensus nomenclature for vertebrate myod genes that accommodates polyploidization events in teleost and tetrapod lineages and is justified from a phylogenetic perspective.Publisher PDFPeer reviewe

    The human DNA glycosylases NEIL1 and NEIL3 excise psoralen-induced DNA-DNA cross-links in a four-stranded DNA structure

    Get PDF
    Interstrand cross-links (ICLs) are highly cytotoxic DNA lesions that block DNA replication and transcription by preventing strand separation. Previously, we demonstrated that the bacterial and human DNA glycosylases Nei and NEIL1 excise unhooked psoralen-derived ICLs in three-stranded DNA via hydrolysis of the glycosidic bond between the crosslinked base and deoxyribose sugar. Furthermore, NEIL3 from Xenopus laevis has been shown to cleave psoralen- and abasic site-induced ICLs in Xenopus egg extracts. Here we report that human NEIL3 cleaves psoralen-induced DNA-DNA cross-links in three-stranded and four-stranded DNA substrates to generate unhooked DNA fragments containing either an abasic site or a psoralen-thymine monoadduct. Furthermore, while Nei and NEIL1 also cleave a psoralen-induced four-stranded DNA substrate to generate two unhooked DNA duplexes with a nick, NEIL3 targets both DNA strands in the ICL without generating single-strand breaks. The DNA substrate specificities of these Nei-like enzymes imply the occurrence of long uninterrupted three- and four-stranded crosslinked DNA-DNA structures that may originate in vivo from DNA replication fork bypass of an ICL. In conclusion, the Nei-like DNA glycosylases unhook psoralen-derived ICLs in various DNA structures via a genuine repair mechanism in which complex DNA lesions can be removed without generation of highly toxic double-strand breaks

    Regulation of mother-to-offspring transmission of mtDNA heteroplasmy

    Get PDF
    mtDNA is present in multiple copies in each cell derived from the expansions of those in the oocyte. Heteroplasmy, more than one mtDNA variant, may be generated by mutagenesis, paternal mtDNA leakage, and novel medical technologies aiming to prevent inheritance of mtDNA-linked diseases. Heteroplasmy phenotypic impact remains poorly understood. Mouse studies led to contradictory models of random drift or haplotype selection for mother-to-offspring transmission of mtDNA heteroplasmy. Here, we show that mtDNA heteroplasmy affects embryo metabolism, cell fitness, and induced pluripotent stem cell (iPSC) generation. Thus, genetic and pharmacological interventions affecting oxidative phosphorylation (OXPHOS) modify competition among mtDNA haplotypes during oocyte development and/or at early embryonic stages. We show that heteroplasmy behavior can fall on a spectrum from random drift to strong selection, depending on mito-nuclear interactions and metabolic factors. Understanding heteroplasmy dynamics and its mechanisms provide novel knowledge of a fundamental biological process and enhance our ability to mitigate risks in clinical applications affecting mtDNA transmission

    From the animal house to the field : are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?

    Get PDF
    Inbred mouse strains, living in simple laboratory environments far removed from nature, have been shown to vary consistently in their immune response. However, wildlife populations are typically outbreeding and face a multiplicity of challenges, parasitological and otherwise. In this study we seek evidence of consistent difference in immunological profile amongst individuals in the wild. We apply a novel method in this context, using longitudinal (repeated capture) data from natural populations of field voles, Microtus agrestis, on a range of life history and infection metrics, and on gene expression levels. We focus on three immune genes, IFN-γ, Gata3, and IL-10, representing respectively the Th1, Th2 and regulatory elements of the immune response. Our results show that there was clear evidence of consistent differences between individuals in their typical level of expression of at least one immune gene, and at most all three immune genes, after other measured sources of variation had been taken into account. Furthermore, individuals that responded to changing circumstances by increasing expression levels of Gata3 had a correlated increase in expression levels of IFN-γ. Our work stresses the importance of acknowledging immunological variation amongst individuals in studies of parasitological and infectious disease risk in wildlife populations
    corecore